Scroll Top

Establish a local Kafka ecosystem using Docker and consume data with Python

Feature Image 2

Introduction

Kafka is a powerful tool for building real-time streaming data pipelines and applications. Establishing Kafka locally can significantly boost productivity by streamlining testing and debugging.

This blog will walk you through setting up Kafka locally using Docker and consuming it with Python.

Kafka

Apache Kafka is an open-source distributed event streaming platform originally developed by LinkedIn and later open-sourced as part of the Apache Software Foundation. Its design ensures efficient, reliable, and fault-tolerant handling of large volumes of real-time data.

Docker

Docker is a platform and a set of tools designed to simplify the process of creating, deploying, and managing applications using containers. Containers are lightweight, standalone, executable packages that contain everything needed to run a piece of software, including code, runtime, system tools, libraries, and settings.

Installing Kafka using Docker

  • The prerequisite for the process is that we have Docker installed on our local system; if not, you can download Docker from the official website below.

https://docs.docker.com/engine/install/

  • Once the installation is complete, you can confirm by running the following command at the command prompt:
docker --version
  • We’ll utilize the confluent platform to configure Docker images and environment variables.
  • Obtain or clone the repository from the following Git repository to your local machine.
https://github.com/confluentinc/cp-all-in-one/tree/7.6.0-post%C2%A0.

File Structure:

Once cloned, you’ll notice the following structure:

  • cp-all-in-one: Confluent Enterprise License version of Confluent Platform.
  • cp-all-in-one-flink: Confluent Enterprise License version with Flink integration.
  • cp-all-in-one-community: Confluent Community License version.
  • cp-all-in-one-cloud: Docker Compose files for Confluent Cloud.
  • cp-all-in-one-kraft: Confluent Enterprise License version using KRaft. 

docker-compose.yml:

Create a new file named docker-compose.yml and insert the provided code snippet containing configurations for Zookeeper, Kafka, Schema Registry, Kafka Connect, Control Center, ksqlDB, and other components.

---
version: '2'
services:
  zookeeper:
    image: confluentinc/cp-zookeeper:7.6.0
    hostname: zookeeper
    container_name: zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000

  broker:
    image: confluentinc/cp-server:7.6.0
    hostname: broker
    container_name: broker
    depends_on:
      - zookeeper
    ports:
      - "9092:9092"
      - "9101:9101"
    environment:
      KAFKA_BROKER_ID: 1
      KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:29092,PLAINTEXT_HOST://localhost:9092
      KAFKA_METRIC_REPORTERS: io.confluent.metrics.reporter.ConfluentMetricsReporter
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
      KAFKA_CONFLUENT_LICENSE_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_CONFLUENT_BALANCER_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
      KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
      KAFKA_JMX_PORT: 9101
      KAFKA_JMX_HOSTNAME: localhost
      KAFKA_CONFLUENT_SCHEMA_REGISTRY_URL: http://schema-registry:8081
      CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS: broker:29092
      CONFLUENT_METRICS_REPORTER_TOPIC_REPLICAS: 1
      CONFLUENT_METRICS_ENABLE: 'true'
      CONFLUENT_SUPPORT_CUSTOMER_ID: 'anonymous'

  schema-registry:
    image: confluentinc/cp-schema-registry:7.6.0
    hostname: schema-registry
    container_name: schema-registry
    depends_on:
      - broker
    ports:
      - "8081:8081"
    environment:
      SCHEMA_REGISTRY_HOST_NAME: schema-registry
      SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: 'broker:29092'
      SCHEMA_REGISTRY_LISTENERS: http://0.0.0.0:8081

  connect:
    image: cnfldemos/cp-server-connect-datagen:0.6.4-7.6.0
    hostname: connect
    container_name: connect
    depends_on:
      - broker
      - schema-registry
    ports:
      - "8083:8083"
    environment:
      CONNECT_BOOTSTRAP_SERVERS: 'broker:29092'
      CONNECT_REST_ADVERTISED_HOST_NAME: connect
      CONNECT_GROUP_ID: compose-connect-group
      CONNECT_CONFIG_STORAGE_TOPIC: docker-connect-configs
      CONNECT_CONFIG_STORAGE_REPLICATION_FACTOR: 1
      CONNECT_OFFSET_FLUSH_INTERVAL_MS: 10000
      CONNECT_OFFSET_STORAGE_TOPIC: docker-connect-offsets
      CONNECT_OFFSET_STORAGE_REPLICATION_FACTOR: 1
      CONNECT_STATUS_STORAGE_TOPIC: docker-connect-status
      CONNECT_STATUS_STORAGE_REPLICATION_FACTOR: 1
      CONNECT_KEY_CONVERTER: org.apache.kafka.connect.storage.StringConverter
      CONNECT_VALUE_CONVERTER: io.confluent.connect.avro.AvroConverter
      CONNECT_VALUE_CONVERTER_SCHEMA_REGISTRY_URL: http://schema-registry:8081
      # CLASSPATH required due to CC-2422
      CLASSPATH: /usr/share/java/monitoring-interceptors/monitoring-interceptors-7.6.0.jar
      CONNECT_PRODUCER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringProducerInterceptor"
      CONNECT_CONSUMER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringConsumerInterceptor"
      CONNECT_PLUGIN_PATH: "/usr/share/java,/usr/share/confluent-hub-components"
      CONNECT_LOG4J_LOGGERS: org.apache.zookeeper=ERROR,org.I0Itec.zkclient=ERROR,org.reflections=ERROR

  control-center:
    image: confluentinc/cp-enterprise-control-center:7.6.0
    hostname: control-center
    container_name: control-center
    depends_on:
      - broker
      - schema-registry
      - connect
      - ksqldb-server
    ports:
      - "9021:9021"
    environment:
      CONTROL_CENTER_BOOTSTRAP_SERVERS: 'broker:29092'
      CONTROL_CENTER_CONNECT_CONNECT-DEFAULT_CLUSTER: 'connect:8083'
      CONTROL_CENTER_KSQL_KSQLDB1_URL: "http://ksqldb-server:8088"
      CONTROL_CENTER_KSQL_KSQLDB1_ADVERTISED_URL: "http://localhost:8088"
      CONTROL_CENTER_SCHEMA_REGISTRY_URL: "http://schema-registry:8081"
      CONTROL_CENTER_REPLICATION_FACTOR: 1
      CONTROL_CENTER_INTERNAL_TOPICS_PARTITIONS: 1
      CONTROL_CENTER_MONITORING_INTERCEPTOR_TOPIC_PARTITIONS: 1
      CONFLUENT_METRICS_TOPIC_REPLICATION: 1
      PORT: 9021

  ksqldb-server:
    image: confluentinc/cp-ksqldb-server:7.6.0
    hostname: ksqldb-server
    container_name: ksqldb-server
    depends_on:
      - broker
      - connect
    ports:
      - "8088:8088"
    environment:
      KSQL_CONFIG_DIR: "/etc/ksql"
      KSQL_BOOTSTRAP_SERVERS: "broker:29092"
      KSQL_HOST_NAME: ksqldb-server
      KSQL_LISTENERS: "http://0.0.0.0:8088"
      KSQL_CACHE_MAX_BYTES_BUFFERING: 0
      KSQL_KSQL_SCHEMA_REGISTRY_URL: "http://schema-registry:8081"
      KSQL_PRODUCER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringProducerInterceptor"
      KSQL_CONSUMER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringConsumerInterceptor"
      KSQL_KSQL_CONNECT_URL: "http://connect:8083"
      KSQL_KSQL_LOGGING_PROCESSING_TOPIC_REPLICATION_FACTOR: 1
      KSQL_KSQL_LOGGING_PROCESSING_TOPIC_AUTO_CREATE: 'true'
      KSQL_KSQL_LOGGING_PROCESSING_STREAM_AUTO_CREATE: 'true'

  ksqldb-cli:
    image: confluentinc/cp-ksqldb-cli:7.6.0
    container_name: ksqldb-cli
    depends_on:
      - broker
      - connect
      - ksqldb-server
    entrypoint: /bin/sh
    tty: true

  ksql-datagen:
    image: confluentinc/ksqldb-examples:7.6.0
    hostname: ksql-datagen
    container_name: ksql-datagen
    depends_on:
      - ksqldb-server
      - broker
      - schema-registry
      - connect
    command: "bash -c 'echo Waiting for Kafka to be ready... && \
                       cub kafka-ready -b broker:29092 1 40 && \
                       echo Waiting for Confluent Schema Registry to be ready... && \
                       cub sr-ready schema-registry 8081 40 && \
                       echo Waiting a few seconds for topic creation to finish... && \
                       sleep 11 && \
                       tail -f /dev/null'"
    environment:
      KSQL_CONFIG_DIR: "/etc/ksql"
      STREAMS_BOOTSTRAP_SERVERS: broker:29092
      STREAMS_SCHEMA_REGISTRY_HOST: schema-registry
      STREAMS_SCHEMA_REGISTRY_PORT: 8081

  rest-proxy:
    image: confluentinc/cp-kafka-rest:7.6.0
    depends_on:
      - broker
      - schema-registry
    ports:
      - 8082:8082
    hostname: rest-proxy
    container_name: rest-proxy
    environment:
      KAFKA_REST_HOST_NAME: rest-proxy
      KAFKA_REST_BOOTSTRAP_SERVERS: 'broker:29092'
      KAFKA_REST_LISTENERS: "http://0.0.0.0:8082"
      KAFKA_REST_SCHEMA_REGISTRY_URL: 'http://schema-registry:8081'

 

Running Docker Image:

Navigate to the designated folder on the command prompt.

To execute the Docker image, use the below command.

docker-compose up -d

Confirm that the services are operational and running.

docker-compose ps

Access Portal:

  • Choose Topic from the menu, and then click Add Topic to create a new one. 

Python Setup:

For the Python module, install the following packages:

pip install kafka-python

Create the message for the topic you created in the previous step, then begin sending it.

from kafka import KafkaProducer
producer = KafkaProducer(bootstrap_servers=['localhost:9092'])
future = producer.send('POC', key=b'VARTY', value=b'CHECK')
record_metadata = future.get(timeout=10)

To consume messages, you can use the following code:

from kafka import KafkaConsumer

consumer=KafkaConsumer(
    'POC',
        group_id='my-group',
     bootstrap_servers=['localhost:9092'])
for message in consumer:
    print(message)

Following these steps, you can set up Kafka locally using Docker and consume messages using Python.

Conclusion:

Establishing the Kafka system locally yields superior performance compared to cloud-based solutions due to reduced latency from data transfer within the local network, and it can function without reliance on internet connectivity. This setup is optimal for development and testing objectives. Developers can swiftly iterate on code modifications, simulate diverse scenarios, and troubleshoot issues without incurring expenses tied to cloud services. 

References:

https://docs.confluent.io/
https://pypi.org/project/kafka-python/
https://kafka-python.readthedocs.io/en/master/install.html

 

Sanjay Balasubramanian

+ posts